Developing creativity in science classrooms through a capacity building model of continuing professional development (CPD)

Mark Windale Kanjana Chookruvong Nason Phonphok
Introduction

Countries across the world are

• attempting to make a pedagogical paradigm shift
• teacher-centred to student-centred (sage-on-the-stage to meddler-in-the-middle)
• to develop desired scientific capabilities, including creative thinking and creativity
Requirement

- Ownership of change
- Active participation of all
- Country wide capacity building
- In-service training
- Development of curriculum materials
ATLAS

Active Teaching and Learning Approaches in Science (ATLAS)
Pilot and National programmes

- Thailand
- Malaysia
- Azerbaijan
- Sri Lanka
- UAE
- Gambia
- Caribbean
- Slovakia

Linked programmes

- Singapore
- Brazil
- Poland
Aims

To introduce science teachers, curriculum developers and educators to a range of effective teaching and learning approaches, designed to

- raise the motivation and achievement
- encourage collaborative learning
- be more student-centred
- implement contextualised learning
- equip students with the
 - knowledge and understanding
 - investigative
 - problem-solving
 - ICT
 - critical and creative thinking
 - communication skills
 - and creativity

to meet the challenge of the 21st century
Aims (cont’d)

To develop the participants
- confidence, experience, expertise and capability in using the approaches
- ability to write curriculum materials adopting the approaches
- ability to train other teachers in the approaches and thus create a sustainable model of development

To establish
- an in-country ATLAS Unit a sustainable network of Teacher/Training Associates
Capacity Building CPD Model

Five 5-day workshops for science teachers, officers, educators and curriculum developers

- active teaching and learning
- experimental, investigative and problem solving approaches
- use of ICT in the teaching and learning of science
- writing workshop
- train as trainers
- gap of 3-4 months between each workshop for trialling, reflecting and reporting
Active teaching and learning

Introduction to a wide range of approaches for developing creative thinking in science

• active reading
• active writing
• group discussion techniques
• games
• simulation
• role play and drama
• supported by
 – coaching/mentoring
 – action research
Experimental, Investigative and Problem Solving Approaches

- Using practical work
- Scientific enquiry
- Developing skills
- Facilitating through the investigation and problem solving processes
- Integrating investigative work
- Developing “whole brain” thinking and creativity
Using ICT in the teaching and learning of science

- Collecting information
- Datalogging
- Data handling
- Simulation
- Modelling
- ICT for supporting creative thinking and creativity
Writing workshop

- Developing skills in writing curriculum materials
- Selecting a topic
- Identifying the key concepts and skills
- Putting into conceptual progression
- Identifying appropriate teaching and learning approaches
- Writing a unit that incorporates a range of approaches and experiences for developing creative thinking and creativity
Training as trainers

• “Working as a teacher of students” and “working as a trainer of teachers”
• Overcoming anxieties or apprehensions of participants
• Developing a session
• The role of the trainer
• Developing their own training pack
• Training teams action plan
Thailand

- 1999 Education Reform Act
- 2 pilots
- programme involving all 36 Rajabhat Universities
- exemplar curriculum materials published by MoE for all schools
- training DVD developed by Nation Channel
- ATLAS Thailand Unit (NSTDA)
• World Bank funded national programme
• 1 school from every province
• School director training
• Master teacher support role
• Annual budget from MoE for dissemination training and support
Outcomes (teachers)

• gone through the paradigm shift
• embraced student-centred teaching and learning
• put more time into preparation of very creative learning experiences, active reading, active writing, games, simulations, role plays, drama, science projects and valued the benefits
• developed their critical and creative thinking and creativity
• become role models of creativity
• created creative learning environments
• embedded into their learning programmes
• started to work in teams to plan curriculum programmes and develop their curriculum materials
• developed their capability, experience and expertise to train other teachers and already trained other teachers
Outcomes (students)

- enjoyed science more
- enjoyed learning through the new approaches
- had greater conceptual understanding
- worked more cooperatively and developed team working skills
- enjoyed learning themselves, developing and sharing ideas
- developed their critical and creative thinking skills
- could solve problems
- could plan and carry out their own science projects
- achieved higher levels of attainment
Key Elements

- Piloting
- School Leadership Training
- Education Officer Training
- Capacity Building CPD Model
- Staged implementation
- Integrated evaluation
- Action research
- Mentoring/reflective partners
- Phased reporting
- Curriculum materials and training DVD
- ATLAS Unit
Session structure

- Educational philosophy
- Hands-on experience (exemplar activities)
- Reflection
- Feedback
- Consolidation
- Presentation
- Developing teachers creativity
Development of curriculum materials

- Developed during pilot
- Ongoing as part of ATLAS Unit activity
- Support dissemination training
- Support implementation
School Leadership Training

- Managing curriculum development and change
- Leadership and team building
- Strategic planning and implementation
- Action plan regional dissemination
Education Officer Training

- Strategies and frameworks for supporting, monitoring and evaluating curriculum and pedagogical change
- Enhancing ability to play effective role in supporting, monitoring and evaluating progress
- Develop the tools for supporting, monitoring and evaluating the implementation
- Action plan the supporting, monitoring and evaluation of the project
Integrated evaluation

- Base line
- Reflective diaries
- Questionnaires
- Interviews
- Reflective partners
- Action research
- Reports
- On-site visits
Staged implementation

- Progressive implementation
- Sensitive to the needs of all
- Target setting
- Part of strategic plans
- Support
- Mentoring
- Monitoring
- Structured reflection
- Review
Action research

- Student diaries
- Teacher reflective diaries
- Questionnaires
- Pre and post tests
- Observation schedules
- Interviews
- Provided with basic tools
Mentoring/reflective partners

- Paired up
- Every month
- Lesson observation
- Paired reflection
- Provided with proforma
Phased reporting and accreditation

- Reports written before following workshop
- During dissemination training
- Based on action research
- Reflective partners
- Staged accreditation (e.g. Pg Cert., Diploma, M.Ed)
Contact details

Mark Windale
Principal Lecturer and Director of Business Development
The Centre for Science Education
Sheffield Hallam University
City Campus
(Owen Building Floor 9)
Howard Street
Sheffield
S1 1WB
Tel: +44(0)1142254879
Mobile:+44(0)7771906395
Fax:+44(0)1142254872
Email:m.windale@shu.ac.uk